top of page

PUBLICATIONS

SUBMITTED OR UNDER REVISION

96. Torres-Rodriguez, N., Yuan, J., Dufour, A., García-Arévalo, I., Živković, I., Point, D., Boulart, C., Planquette, H., Knoery, J., Horvat, M., Amouroux, D., Bonnet, S., Guieu, C., Sun, R., Heimbürger-Boavida, L.E. Hydrothermal vents from the Tonga Arc drive low mercury concentrations in phytoplankton . Submitted.

95. Chavagnac, V., Destrigneville, C., Boulart, C., Vigier, N., Guieu, C., and Bonnet, S. Impact of submarine volcanic versus hydrothermal activity onto the strontium and lithium isotopic signatures of the water column (TONGA). Submitted to Frontiers in Marine Science.

94. Lory, C., Dulaquais, G., Camps, M. Fourquez, M.,  Whitby, H., Fourrier, P., Mahieu, L., Tedetti, M., Guieu, C. and Bonnet, S. Extracellular polymeric substances (EPS) released by Crocosphaera watsonii: an overlooked ligand making iron highly bioavailable. Submitted.



PUBLISHED
 

93. Chowdhury, S., Berthelot, H., Baudet, C., Gonzalez-Santana, D., Reeder, C., L’Helguen, S., Maguer, JF., Loscher, C., Singh, A., Blain, S., Cassar, N., Bonnet, S., Planquette, H., Benavides, M. Fronts divide diazotroph communities in the Southern Indian Ocean. FEMS Microbiology Ecology. Accepted​, 2024.

92. Dugenne, M., Corrales-Ugalde, M., Luo, J.Y.... Bonnet, S.... and Vilain, M. First release of the Pelagic Size Structure database: global datasets of marine size spectra obtained from plankton imaging devices. Earth System Science Data, https://doi.org/10.5194/essd-2023-479, 2024.

 

91. Ababou, F.E, Le Moigne, F.A.C, Cornet, V, Taillandier, V. and Bonnet, S. ​Composition of the sinking particle flux in a hot spot of dinitrogen fixation revealedt hrough polyacrylamide gel traps. Frontiers in Marine Sciencehttps://doi.org/10.3389/fmars.2023.1290625, 2024.

90. Mahieu, L., Whitby, H., Dulaquais, G., Tilliette, C., Guigue, C., Tedetti, M., Lefevre, D., Fourrier, P., Bressac, M., Sarthou, G., Bonnet, S., Guieu, C. and Salaun, P. Iron-binding by dissolved organic matter in the Western Tropical South Pacific Ocean (GEOTRACES cruise GPpr14). Frontiers in Marine Science, https://doi.org/10.3389/fmars.2024.1304118, 2024.

89. Bonnet, S., Guieu, C., Taillandier, V., Boulart, C., Bouruet-Aubertot, P., Gazeau, F., Bressac, M., Knapp, A. N., Cuypers, Y., González-Santana, D., Forrer, H. J., Grisoni, J.-M., Grosso, O., Habasque, J., Jardin-Camps, M., Leblond, N., Moigne, F. Le, Dhaussy, A. L., Lory, C., … Tilliette, C. Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the Ocean. Science, Vol 380, Issue 6647, pp. 812-817, https://doi.org/10.1126/science.abq4654, 2023.

88. Forrer, H.J., Bonnet, S., Thomas, R.K, Grosso, O., Guieu, C., and Knapp, A.N. Quantifying N2 fixation and its contribution to export production near the Tonga-Kermadec Arc using nitrogen isotope budgets. Frontiers in Marine Science, https://doi.org/10.3389/fmars.2023.1249115, 2023.

87. Mériguet, Z., Vilain, M., Baudena, A., Tilliette, C., Habasque, J., Lebourges-Dhaussy, A., Bhairy, N., Guieu, C., Bonnet, S., and Lombard, F. Plankton community structure in response to hydrothermal iron inputs along the Tonga-Kermadec arc. Frontiers in Marine Science, 10, 1232923, https://doi.org/10.3389/fmars.2023.1232923. 2023.

86. Shao, Z., Xu, Y., Wang, H., Luo, W., Wang, L., Huang, Y., ... Bonnet, S., ... & Luo, Y. W. (2023). Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N 2 fixation. Earth System Science Data, 15(8), 3673-3709, https://doi.org/10.5194/essd-15-3673-2023, 2023.

85. Chowdhury, S., Raes, E., Hörstmann, C., Ahmed, A., Ridame, C., Metzl, N., Bhavya, P.S., Sato, T., Shiozaki, T., Bonnet, S., Löscher, C.R., Singh, A., Benavides, M. Diazotrophy in the Indian Ocean: current understanding and future perspectives. Limnology & Oceanography Letters, 8, 5, https://doi.org/10.1002/lol2.10343. 2023.

84. Tilliette, C., Gazeau, F. Portlock, G., Bonnet, S., Guigue, C., Leblond, N., Lory, C., Marie, D., Montanes, M., Pulido-Villena, E., Sarthou, G., Tedetti, M., Vorrath, M.E., Whitby, H. and Guieu, C. Influence of shallow hydrothermal fluids release on the functioning of phytoplankton communities. Frontiers in Marine Science, 10, 1082077, https://doi.org/10.3389/fmars.2023.10820772023.

83. Ababou, F.E., Camps, M., Le Moigne, F., & Bonnet, S. A Mechanistic understanding of diazotroph aggregation and sinking: ‘a rolling tank approach’. Limnology & Oceanography, Vol. 68, Issue 3, 666-677, https://doi.org/10.1002/lno.123012023.

82. Scherrer, R., Quiniou, T., Jauffrais, T., Lemonnier, H., Bonnet, S., and Selmaoui-Folcher, F. Holographic reconstruction enhancement via unpaired image-to-image translation. Applied Optics, 2023, Vol. 61, Issue 33, pp. 9807-9816, https://doi.org/10.1364/AO.471131, 2022.

81. Bonnet, S. & Le Moigne F.A.C. Et si les océans tropicaux piégeaient plus de CO₂ que prévu. The conversation, 2022. 

80. Bonnet, S., Benavides, M., Le Moigne, F.A.C, Camps, M., Torremocha, A., Grosso, O., Dimier, C., Spungin, D., Berman-Frank, Garczarek, L. Cornejo-Castillo, F. Diazotrophs are overlooked contributors to carbon and nitrogen export to the deep ocean. The ISME Journal, 1-12. https://doi.org/10.1038/s41396-022-01319-3, 2022.

79. Benavides,M., Bonnet, S., Le Moigne, F., Armin, G., Inomura, K., Hallstrøm, S., Riemann, L., Poletti, E., Garel, M., Berman-Frank, I., Grosso, O., Leblanc, K., Tamburini, C. Sinking Trichodesmium fixes nitrogen in the dark ocean. The ISME Journal, 16(10), 2398-2405, https://doi.org/10.1038/s41396-022-01289-6, 2022.

78.  Filella, A., Riemann, L., Van Wambeke, F., Pulido-Villena, E., Vogts, A., Bonnet, S., Grosso, O., Diaz, J.M., Duhamel, S., and Benavides, M. Contrasting roles of DOP as a source of phosphorus and energy for marine diazotrophs. Frontiers in Marine Science, 25, https://doi.org/10.3389/fmars.2022.923765, 2022.

 

77. Lory, C., Van Wambeke, F., Fourquez, M. Berman-Frank, I., Barani, A., Tilliette, C., Marie, D., Nunige, S., Guieu C., and Bonnet, S.. Assessing the contribution of diazotrophs to microbial Fe uptake using a group specific approach in the Western Tropical South Pacific Ocean, ISME Communications, 2(1), 1-11, https://doi.org/10.1038/s43705-022-00122-7, 2022.​

76. Meunier, V., Bonnet, S., Camps, M., Benavides, M., Dubosc, J., Rodolfo-Metalpa R., Houlbrèque, F. Ingestion of diazotrophs make corals more resistant to bleaching. Biomolecules, 12(4), 537, https://doi.org/10.3390/biom12040537, 2022.

75. Benavides, M. Caffin, M., Duhamel, S., Foster, R., Grosso, O., Guieu, C., Van Wambeke, F., Bonnet, S. Anomalously high abundance of Crocosphaera in the South Pacific Gyre. FEMS Microbiology Lettershttps://doi.org/10.1093/femsle/fnac039, 2022.

74. Meunier, V., Geissler, L., Bonnet, S., Rädecker, N., Perna, G., Grosso, O., Lambert, C., Rodolfo-Metalpa, R. Voolstra, C. Houlbreque, F. Microbes support enhanced nitrogen requirements of coral holobionts in a high CO2 environment. Molecular Ecology, https://doi.org/10.1111/mec.16163, 2021.

73. Meunier, V., Bonnet, S., Benavides, M., Ravache, A., Grosso, O., Lambert, C., Houlbreque, F. Diazotroph-Derived Nitrogen assimilation strategies differ by scleractinian coral species. Frontiers in Marine Science​, https://doi.org/10.3389/fmars.2021.692248, 2021.

72. Benavides, M., Conradt, L.,
Bonnet, S., Berman-Frank, I., Barrillon, S., Petrenko, A. and Doglioli, A. M. Fine scale sampling unveils diazotroph patchiness in the South Pacific Ocean, ISME Communications. pp. 1–6. doi: 10.1038/s43705-021-00006-2, 2021.

71.   Saulia, E., Benavides, M., Henke, B., Turk-Kubo, K., Cooperguard, H., Grosso, O., Desnues, A., Rodier, M., Dupouy, C., Riemann, L. and Bonnet. SSeasonal Shifts in Diazotrophs Players: Patterns Observed Over a Two-Year Time Series in the New Caledonian Lagoon (Western Tropical South Pacific Ocean). Frontiers in Marine Science. 7:581755. doi:10.3389/fmars.2020.581755, 2020.

70.   White, A.E., Granger, J., Selden, C., Gradoville, M.R., Potts, L., Bourbonnais, A., Fulweiler, R.W., Knapp, A.N., Mohr, W., Moisander, P.H., Tobias, C.R., Caffin, M., Wilson, S.T., Benavides, M., Bonnet, S., Mulholland, M., Chang, B.X. (2020) A critical review of the 15N2 tracer method to measure diazotrophic production in pelagic ecosystems. Limnology and Oceanography: Methods, 2020.
 
69.   Messié, M., Petrenko, A., Doglioli, A. M., Aldebert, C., Martinez, E., Koenig, G., Bonnet, S. & Moutin, T. The delayed island mass effect: How islands can remotely trigger blooms in the oligotrophic ocean. Geophysical Research Letters, e2019GL085282, 2020.
 
68.   Benavides, M., Duhamel, S., Van Wambeke, F., Shoemaker, K. M., Moisander, P. H., Salamon, E., ... & Bonnet, S. Dissolved organic matter stimulates N2 fixation and nifH gene expression in Trichodesmium. FEMS Microbiology Letters, 2020.
 
67.   Lu, Y., Wen, Z., Shi, D., Lin, W., Bonnet, S., Dai, M., & Kao, S. J. Biogeography of N2 fixation influenced by the western boundary current intrusion in the South China Sea. Journal of Geophysical Research: Oceans, 124(10), 6983-6996, 2019.
 
66.  Meunier, V., Bonnet, S., Pernice, M., Benavides, M., Lorrain, A., Grosso, O., Lambert, C. & Houlbrèque, F. Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus. The ISME journal, 13(11), 2882-2886, 2019.
 
65.  Guieu, C., Bonnet, S., Petrenko, A., Menkes, C., Chavagnac, V., Desboeufs, K., Maes, C. & Moutin, T. Iron from a submarine source impacts the productive layer of the Western Tropical South Pacific (WTSP). Scientific reports, 8(1), 1-9, 2018.
 
64.   Rousset, G., De Boissieu, F., Menkes, C. E., Lefèvre, J., Frouin, R., Rodier, M., Ridoux, V., Laran, S., Bonnet, S., and Dupouy, C. Remote sensing of Trichodesmium spp. mats in the western tropical South Pacific, Biogeosciences, 15, 5203–5219, https://doi.org/10.5194/bg-15-5203-2018, 2018.
 
63.   Dutheil, C., Aumont, O., Gorguès, T., Lorrain, A., Bonnet, S., Rodier, M., Dupouy, C., Shiozaki, T., and Menkes, C. Modelling N2fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean, Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, 2018.
 
62.   Spungin, D., Belkin, N., Foster, R. A., Stenegren, M., Caputo, A., Pujo-Pay, M., Leblond, N., Dupouy, C., Bonnet, S., and Berman-Frank, I. Programmed cell death in diazotrophs and the fate of organic matter in the western tropical South Pacific Ocean during the OUTPACE cruise, Biogeosciences, 15, 3893–3908, https://doi.org/10.5194/bg-15-3893-2018, 2018.
 
61.   Bonnet, S., Caffin, M., Berthelot, H., Grosso, O., Benavides, M., Helias-Nunige, S., Guieu, C., Stenegren, M., and Foster, R. A.: In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N2 fixation (OUTPACE cruise), Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, 2018.
 
60.  Knapp, A. N., McCabe, K. M., Grosso, O., Leblond, N., Moutin, T., and Bonnet, S. Distribution and rates of nitrogen fixation in the western tropical South Pacific Ocean constrained by nitrogen isotope budgets, Biogeosciences, 15, 2619–2628, https://doi.org/10.5194/bg-15-2619-2018, 2018.
 
59.    Caffin, M., Berthelot, H., Cornet-Barthaux, V., Barani, A., and Bonnet, S. Transfer of diazotroph-derived nitrogen to the planktonic food web across gradients of N2 fixation activity and diversity in the western tropical South Pacific Ocean, Biogeosciences, 15, 3795–3810, https://doi.org/10.5194/bg-15-3795-2018, 2018.
 
58.    Benavides, M., Shoemaker, K. M., Moisander, P. H., Niggemann, J., Dittmar, T., Duhamel, S., Grosso, O., Pujo-Pay, M., Hélias-Nunige, S., Fumenia, A., and Bonnet, S. Aphotic N2 fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean, Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018, 2018.
 
57.  Duhamel, S., Van Wambeke, F., Lefevre, D., Benavides, M., & Bonnet, S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environmental microbiology, 20(8), 2743-2756, 2018.
 
56.  Henke, B.A., Turk-Kubo, K.A., Bonnet, S., Zehr, J.P. Distributions and Abundances of Sublineages of the N2-Fixing Cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian Coral Lagoon. Frontiers in microbiology, doi: 10.3389/fmicb.2018.00554, 2018.  
 
55.   Benavides, M., Martias, C., Elifantz, H., Berman-Frank, I., Dupouy, C., Bonnet, S. Dissolved organic matter influences N2 fixation in the New Caledonian lagoon (Western Tropical South Pacific). Frontiers in Marine Science, doi: 10.3389/fmars.2018.00089, 2018.
 
54.   Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R. A.: Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific, Biogeosciences, 15, 1559-1578, https://doi.org/10.5194/bg-15-1559-2018, 2018.
 
53.   Lu, Y., Wen, Z., Shi, D., Chen, M., Zhang, Y., Bonnet, S., Li, Y., Tian, J., and Kao, S.-J.: Effect of light on N2fixation and net nitrogen release of Trichodesmium in a field study, Biogeosciences, 15, 1-12, https://doi.org/10.5194/bg-15-1-2018, 2018.
 
52. Benavides, M., Bonnet, S., Berman-Frank, I., Riemann, L. Deep into oceanic N2 fixation. Frontiers in Marine Science, doi: 10.3389/fmars.2018.00108, 2018.
 
51.    Caffin, M., Moutin, T., Foster, R. A., Bouruet-Aubertot, P., Doglioli, A. M., Berthelot, H., Guieu, C., Grosso, O., Helias-Nunige, S., Leblond, N., Gimenez, A., Petrenko, A. A., de Verneil, A., and Bonnet, S. N2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise), Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, 2018.

 

50.  Meunier, V., Bonnet, S., Lorrain, A., Benavides, M., Camps, M., Grosso, O., Houlbrèque, F. 2018. The reefs’ quest for diazotrophs. In: Payri CE (ed) New Caledonia, World of Corals. IRD Editions/Solaris, Marseille/Nouméa, p 288.

49.   Bonnet, S., Fichez, R., Dupouy, C.,  and Rodier, M. 2018. Crystal clear waters filled with microscopic organisms. In: Payri CE (ed) New Caledonia, World of Corals. IRD Editions/Solaris, Marseille/Nouméa, p 288.


 48.  Moisander, P.H., Benavides, M., Bonnet, S., Berman-Frank, I., White, A., Riemann, L. Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Frontiers in microbiology, doi: 10.3389/fmicb.2017.01736, 2017.  
 
47.   Houssard, P., Lorrain, A., Tremblay-Boyer, L., Allain, V., Graham, B., Menkes, C.E.,  Pethybridge, H., Couturier, L., Point, D., Leroy, B., Receveur, A., Hunt, B., Vourey, E., Bonnet, S., Rodier, M., Raimbault, P., Feunteun, E., Kuhnert, P., Munaron, J.M., Lebreton, B., Otake, T., Letourneur, Y. Trophic position increases with thermocline depth in tropical tunas across the Western and Central Pacific Ocean. Progress in Oceanography, 154, 49-63, 2017. 
 
46.   Moutin, T., Doglioli, A. M., de Verneil, A., and Bonnet, S. Preface: The Oligotrophy to the UlTra-oligotrophy PACific Experiment (OUTPACE cruise, 18 February to 3 April 2015), Biogeosciences, 14, 3207–3220, https://doi.org/10.5194/bg-14-3207-2017, 2017.
 
45.   Ganachaud, A., Cravatte, S., Sprintall, J., Germineaud, C., Alberty, M., Jeandel, C., Eldin G., Benavides, M., Bonnet, S. et al. The Solomon Sea: its circulation, chemistry, geochemistry and biology explored during two oceanographic cruises. Elementa: Science of the Anthropocene 2017;5:33. DOI: http://doi.org/10.1525/elementa.221, 2017.  
 
44.    Berthelot, H., Benavides, M., Moisander, P., Grosso, O., Bonnet, S. High nitrogen fixation rates in the particulate and dissolved pools in the Southwestern Pacific. Geophysical Research Letters 44, doi:10.1002/2017GL073856, 2017.
 
43.   Bonnet, S., Caffin, M., Berthelot, H., Moutin, T. A hot spot of N2 fixation in the western tropical South Pacific pleads for a spatial decoupling between N2 fixation and denitrification. PNAS, doi: 10.1073/pnas.1619514114, 2017.  
 
42.    Benavides, M., Berthelot, H., Duhamel, S., Raimbault, P., and Bonnet, S. Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific, Scientific Reports, 7, 41315, doi:10.1038/srep41315, 2017. 
 
41.  Benavides, M., Bonnet, S., Hernández, N., Martínez-Pérez, A. M., Nieto-Cid, M., Álvarez-Salgado, X. A., Baños, I., Montero, M. F., Mazuecos, I. P., Gasol, J. M., Osterholz, H., Dittmar, T., Berman-Frank, I., and Arístegui, J.: Basin-wide N2 fixation in the deep waters of the Mediterranean Sea, Global Biogeochemical Cycles, 30, 952–961, 2016a.
 
40.    Benavides, M., Houlbrèque, F., Camps, M., Lorrain, A., Grosso, O., and Bonnet, S. Diazotrophs: a non-negligible source of nitrogen for the tropical coral Stylophora pistillata. Journal of Experimental Biology, doi: doi: 10.1242/jeb.139451, 2016b.
 
39.   Berthelot, H., Bonnet, S., Grosso, O., Cornet, V., and Barani, A. Transfer of diazotroph derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between Trichodesmium erythraeum, Crocosphaera watsonii and Cyanothece sp., Biogeosciences 13, 4005-4021, 2016.
 
38.  Bonnet, S., Baklouti, M., Gimenez, A., Berthelot, H., and Berman-Frank, I. Biogeochemical and biological impacts of diazotroph blooms in a Low Nutrient Low Chlorophyll ecosystem: synthesis from the VAHINE mesocosm experiment (New Caledonia), Biogeosciences, doi: doi:10.5194/bg-2015-668, 2016a.
 
37.    Bonnet, S., Berthelot, H., Turk-Kubo, K., Cornet-Bartaux, V., Fawcett, S. E., Berman-Frank, I., Barani, A., Dekaezemacker, J., Benavides, M., Charriere, B., and Capone, D. G. Diazotroph derived nitrogen supports diatoms growth in the South West Pacific: a quantitative study using nanoSIMS, Limnology and Oceanography, doi: doi:10.1002/lno.10300, 2016b. 
 
36.   Bonnet, S., Berthelot, H., Turk-Kubo, K., Fawcett, S. E., Rahav, E., L'Helguen, S., and Berman-Frank, I.: Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low nutrient low chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia), Biogeosciences 13, 2653-2673, 2016c.
 
35.  Bonnet, S., Moutin, T., Grisoni, J. M., Helias, S., Rodier, M., Folcher, E., Bourgeois, B., Renaud, A., and Boré, J. M.: Introduction to the project VAHINE: VAriability of vertical and tropHIc transfer of fixed N2 in the south wEst Pacific, Biogeosciences 13, 2803-2814, 2016d.
 
34.  Camps, M., Benavides, M., Lema, K. A., Bourne, D. G., Grosso, O., and Bonnet, S. Released coral mucus does not enhance planktonic N2 fixation rates, Aquatic Microbial Ecology, doi: 10.3354/ame01787, 2016.
 
33.  Gimenez, A., Baklouti, M., Bonnet, S., and Moutin, T. Biogeochemical fluxes and fate of diazotroph derived nitrogen in the food web after a phosphate enrichment: Modeling of the VAHINE mesocosms experiment, Biogeosciences, 13, 5103-5120, doi:10.5194/bg-13-5103-2016, 2016.
 
32.  Hunt, B. P. V., Bonnet, S., Berthelot, H., Conroy, B. J., Foster, R., and Pagano, M. Contribution and pathways of diazotroph derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon, Biogeosciences 13, 3131-3145, 2016.
 
31.  Knapp, A. N., Fawcett, S. E., Martinez-Garcia, A., Leblond, N., Moutin, T., and Bonnet, S. Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in VAHINE mesocosm experiments, Biogeosciences, 13, 4645-4657, doi:10.5194/bg-13-4645-2016, 2016.
 
30.  Pfreundt, U., Spungin, D., Bonnet, S., Berman-Frank, I., and Hess, W. R.: Global analysis of gene expression dynamics within the marine microbial community during the VAHINE mesocosm experiment in the South West Pacific, Biogeosciences, doi:10.5194/bg-2015-564, 2016a.
 
29.  Pfreundt, U., Van Wambeke, F., Bonnet, S., and Hess, W. R.: Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon, Biogeosciences 13, 2319-2337 2016b.
 
28.   Spungin, D., Pfreundt, U., Berthelot, H., Bonnet, S., AlRoumi, D., Natale, F., Hess, H. R., Bidle, K. D., and Berman-Frank, I. Mechanisms of Trichodesmium bloom demise within the New Caledonia Lagoon during the VAHINE mesocosm experiment, Biogeosciences, doi: doi:10.5194/bg-2015-613, 2016.
 
27.  Van Wambeke, F., Pfreundt, U., Barani, A., Berthelot, H., Moutin, T., Rodier, M., Hess, W., and Bonnet, S. Heterotrophic bacterial production and metabolic balance during the VAHINE mesocosm experiment in the New Caledonia lagoon, Biogeosciences, 13, 3187-3202, 2016.
 
26.  Benavides, M., Moisander, P. H., Berthelot, H., Dittmar, T., Grosso, O., and Bonnet, S. Mesopelagic N2 fixation related to organic matter composition in the Solomon and Bismarck Seas (Southwest Pacific), PLoS One, 10, 2015a.
 
25.  Berthelot, H., Bonnet, S., Camps, M., Grosso, O., and Moutin, T. Assessment of the dinitrogen released as ammonium and dissolved organic nitrogen by unicellular and filamentous marine diazotrophic cyanobacteria grown in culture, Frontiers in Marine Science, 2, 2015a.
 
24.  Berthelot, H., Moutin, T., L'Helguen, S., Leblanc, K., Hélias, S., Grosso, O., Leblond, N., Charrière, B., and Bonnet, S. Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon), Biogeosciences, 12, 4099-4112, 2015b.
 
23.  Bonnet, S., Rodier, M., Turk, K., K., Germineaud, C., Menkes, C., Ganachaud, A., Cravatte, S., Raimbault, P., Campbell, E., Quéroué, F., Sarthou, G., Desnues, A., Maes, C., and Eldin, G. Contrasted geographical distribution of N2 fixation rates and nifH phylotypes in the Coral and Solomon Seas (South-Western Pacific) during austral winter conditions, Global Biogeochemical Cycles, 29, 2015.
 
22.  Turk-Kubo, K. A., Frank, I. E., Hogan, M. E., Desnues, A., Bonnet, S., and Zehr, J. P. Diazotroph community succession during the VAHINE mesocosms experiment (New Caledonia Lagoon), Biogeosciences, 12, 7435-7452, 2015.
 
21.  Ridame, C., Dekaezemacker, J., Guieu, C., Bonnet, S., L'Helguen, S., and Malien, F. Contrasted Saharan dust events in LNLC environments: impact on nutrient dynamics and primary production, Biogeosciences, 11, 4783-4800, 2014.
 
20.  Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R. M., Grosso, O., Zehr, J. P., and Capone, D. G. Aphotic N2 fixation in the Eastern Tropical South Pacific Ocean, PLoS One, 8, e81265, 2013a.
 
19.   Bonnet, S., Tovar-Sánchez, A., Panzeca, C., Duarte, C. M., Ortega-Retuerta, E., and Sañudo-Wilhelmy, S. A. Geographical gradients of dissolved Vitamin B12 in the Mediterranean Sea, Frontiers in Microbiology, 4, 2013b.
 
18.   Dekaezemacker, J., Bonnet, S., Grosso, O., Moutin, T., Bressac, M., and Capone, D. G. Evidence of active dinitrogen fixation in surface waters of the Eastern Tropical South Pacific during El Nino and La Nina events and evaluation of its potential nutrient controls, Global Biogeochemical Cycles, 27, 1-12, 2013.
 
17. Knapp, A. N., Dekaezemacker, J., Bonnet, S., Sohm, J. A., and Capone, D. G. Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii abundance and N2 fixation rates to varying NO3- and PO43-concentrations in batch cultures, Aquatic Microbial Ecology, 66, 223-236, 2012.
 
16.    Luo, Y. W., Doney, S. C., Anderson, L. A., Benavides, M., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Maranón, E., McGillicuddy Jr, D. J., Moisander, P. H., Moore, C. M., Mourino-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P. Database of diazotrophs in global ocean: abundances, biomass and nitrogen fixation rates, Earth System Science Data 5, 47-106, 2012.
 
15.  Bonnet, S., Grosso, O., and Moutin, T. Planktonic Dinitrogen Fixation along a longitudinal gradient across the Mediterranean Sea during the stratified period (BOUM cruise), Biogeosciences, 8, 2257-2267, 2011.
 
14.   Dekaezemacker, J. and Bonnet, S. Sensitivity of N2 fixation to combined nitrogen forms (NO3- and NH4+) in two strains of the marine diazotroph Crocosphaera watsonii (Cyanobacteria), Marine Ecology Progress Series, 438, 33-46, 2011.
 
13.  Durrieu de Madron, X., Guieu, C., Sempere, R., Conan, P., Cossa, D., D'Ortenzio, F., Estournel, C., Gazeau, F., Rabouille, C., Stemmann, L., Bonnet, S., and al. Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean, Progress in Oceanography 91, 97-166, 2011.

12.  Bonnet, S., Webb, E., Panzeca, C., Karl, D. M., Capone, D. G., and Sanudo-Wilhelmy, S. Vitamin B12 excretion by cultures of the marine cyanobacteria Crocosphaera and Synechococcus, Limnology and Oceanography, 55, 1959-1964, 2010.
 
11.  Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O., and Capone, D. G. Nitrogen fixation in the western equatorial Pacific: Rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance, Global Biogeochemical Cycles, 23, 1-13, 2009.
 
10.  Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D., Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J. M., M. Shank, L. M., and Siefert, R. L. Atmospheric Iron Deposition: Global distribution, variability, and human perturbations, Annual Review of Marine Science, 1, 245-278, 2009.
 
9.  Blain, S., Bonnet, S., and Guieu, C. Dissolved iron distribution in the tropical and sub tropical South Eastern Pacific, Biogeosciences, 5, 269–280, 2008.
 
8.   Bonnet, S., Guieu, C., Bruyant, F., Prasil, O., Van Wambeke, F., Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J. P., Masquelier, S. M., Garczarek, L., and Claustre, H. Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise), Biogeosciences, 5, 215-225, 2008.
 
7.   Van Wambeke, F., Bonnet, S., Moutin, T., Raimbault, P., Alarcón, G., and Guieu, C. Factors limiting heterotrophic bacterial production in the Southern Pacific Ocean, Biogeosciences, 5, 833-845, 2008.
 
6.  Wagener, T., Guieu, C., Losno, R., Bonnet, S., and Mahowald, N. Revisiting Atmospheric dust export to the Southern Hemisphere Ocean, Global Biogeochemical Cycles, 22, 2008.
 
5.  Bonnet, S. and Guieu, C. Atmospheric forcing on the annual iron cycle in the Mediterranean Sea. A one-year survey, Journal of Geophysical Research, 111, 2006.
 
4.  Bonnet, S., Guieu, C., Chiaverini, J., Ras, J., and Stock, A. Effect of atmospheric nutrients on the autotrophic communities in a low nutrient, low chlorophyll system, Limnology and Oceanography, 50, 1810-1819, 2005.
 
3.  Guieu, C., Bonnet, S., Wagener, T., and Loye-Pilot, M. D.: Biomass burning as a source of dissolved iron to open ocean? Geophysical Research Letters, 32, 2005.
 
2.  Bonnet, S. and Guieu, C. Dissolution of atmospheric iron in seawater, Geophysical Research Letters, 31, doi:10.1029/2003GL018423, 2004.
 
1.   Ragueneau, O., Chauvaud, L., A., L., G., T., Paulet, Y., Bonnet, S., Grall, J., Corvoisier, R., Le Hir, M., and Jean, F. Direct evidence of a biologically active coastal silicate pump: Ecological implications, Limnology and Oceanography, 47, 1849-1854, 2002.


 

©2020 par Sophie Bonnet IRD/MIO. Créé avec Wix.com

Our science recently presented at the Aquatic Sciences Meeting 2021

 

 

QUANTIFYING DI-NITROGEN FIXATION AND ITS CONTRIBUTION TO EXPORT PRODUCTION USING D15N BUDGETS NEAR THE TONGA ARC IN THE WESTERN SUB-TROPICAL SOUTH PACIFIC

 

Heather Forrer, Sophie Bonnet, Cécile Guieu, Angela Knapp

 

Aquatic Sciences Meeting ASLO, Virtual, 2021

  

Identifying the spatial distribution of the largest di-nitrogen (N2) fixation fluxes to the ocean remains a critical goal of chemical oceanography. The location of these fluxes informs our understanding of the environmental sensitivities of N2 fixation and the capacity for the dominant marine nitrogen (N) source and sink processes to respond to each other, influencing the global carbon cycle and climate. Here we quantify rates of N2 fixation as well as its importance for supporting export production using d15N budgets at stations sampled near the Tonga subduction zone. Recent observations indicate that shallow hydrothermal plumes may provide significant dissolved iron to the euphotic zone in this region, thereby stimulating N2 fixation. We present measurements of water column nitrate+nitrite d15N that are compared with the d15N of sinking particulate N collected by drifting sediment traps at stations both proximal and distal to subsurface hydrothermal activity. Preliminary d15N budget results suggest very high rates of N2 fixation at stations proximal to hydrothermal activity, supporting the majority (>50%) of export production. These findings are consistent with prior results from the region, however are in contrast to observations from d15N budgets in most other oligotrophic regions, where N2 fixation typically supports <10% of export production. Consequently, this region is expected to contribute significant low-d15N N to the thermocline, balancing the elevated nitrate+nitrite d15N generated in the oxygen deficient zones in the eastern tropical Pacific.

 

A GROUP-SPECIFIC APPROACH TO QUANTIFY IRON UPTAKE BY DIAZOTROPHS AND ASSOCIATED MICROBIAL COMMUNITIES

 

Caroline Lory, France Van Wambeke, Marion Fourquez, Aude Barani, Chloé Tiliette, Dominique Marie, Sandra Nunige, Cécile Guieu, Sophie Bonnet

 

Aquatic Sciences Meeting ASLO, Virtual, 2021

 

In oligotrophic oceans, biological N2 fixation is often limited by iron (Fe) as both photosynthesis and N2 fixation confer high Fe requirements to diazotrophs. In the Western Tropical South Pacific (WTSP), shallow hydrothermal sources provide new Fe to the euphotic layer, which is hypothesized to sustain the high N2 fixation rates reported in the region. Yet, the Fe demand of diazotrophs and their competition for this new resource with the rest of the microbial community remain unknown. By coupling 55Fe uptake experiments on three size fractions (0.2-2 µm, 2-10 µm and >10 µm) with cell-sorting by flow cytometry, we assess for the first time, the specific Fe needs of diazotrophs in their natural environment and across dissolved Fe gradients (above and away from a submarine volcano). We discuss bulk and size fraction Fe uptake rates along the studied gradients and compare the specific Fe uptake rates of filamentous and unicellular diazotrophs with other sorted organisms. This group-specific approach reveals that Trichodesmium and non-diazotrophic pico-plankton are the major contributors to the biological Fe demand in this remote ecosystem.

 

P-ANHYDRIDES AS A POTENTIAL SOURCE OF DOP FOR DIAZOTROPHS IN THE SOUTH PACIFIC

 

Alba Filella, France van Wambeke, Elvira Pulido-Villena, Sandra Nunige, Olivier Grosso, Sophie Bonnet, Lasse Riemann, Solange Duhamel, Mar Benavides

 

Aquatic Sciences Meeting ASLO, Virtual, 2021

 

In phosphate limited ocean regions, diazotrophs may rely on dissolved organic P (DOP). Oceanic DOP contains P-monoesters, phosphonates and P-anhydrides. While the two first are known to promote diazotrophy, the lability of the latter to diazotrophs is unknown. Here we explore the role of inorganic and organic P-anhydrides on diazotrophs in low and moderate phosphate availability regions of the South Pacific (TONGA cruise https://doi.org/10.17600/18000884). Surface communities were incubated with AMP (P-monoester), ATP (P-ester and P-anhydride bonds) or 3polyP (inorganic P-anhydride). After 48h, we measured N2 fixation rates, diazotroph and microbial community abundance and composition, bulk elemental composition, bacterial production rates and ectoenzymatic activities. Crocosphaera abounded in both regions, while Trichodesmium occurred mainly in mesotrophic waters.  Overall, N2 fixation was stimulated by AMP additions compared to the P-anhydrides tested, and although N2 fixation rates were ≥100-fold greater at the mesotrophic station, the addition of AMP prompted a greater response at the oligotrophic station. Conversely, enhanced N2 fixation rates measured in 3polyP treatments were comparable between sites. Interestingly, ATP additions mainly boosted growth of heterotrophic bacteria to a similar extent at both sites, but not N2 fixation. Overall, our results suggest a differential repartition of the P pool among diazotrophic vs non-diazotrophic communities and a potential role of P-anhydrides as a source of P for marine diazotrophs in tropical waters.

  

POTENTIAL ROLE OF MARINE PICOCYANOBACTERIA IN THE DISTRIBUTION OF DISSOLVED METHANE IN THE WESTERN TROPICAL SOUTH PACIFIC OCEAN

 

Cédric Boulart, Pierre Le Moal, Jean-Philippe Gac, Estelle Bigeard, Mathilde Ferrieux, Laurence Garczarek, Sophie Bonnet, Cécile Guieu

 

Aquatic Sciences Meeting ASLO, Virtual, 2021

 

Oceans are often considered as a minor source of methane (CH4) to the atmosphere but recent observations highlighted their oversaturation at the global scale, making them a significant source to the atmosphere. Recently marine picocyanobacteria emerged as potential important players, producing CH4 as a byproduct of methylphosphonate decomposition in phosphate-depleted, oxic surface waters. As part of the TONGA Cruise (NO L’Atalante, Nov. 2019, https://doi.org/10.17600/18000884) in the Western Tropical South Pacific Ocean (WTSP), we sampled the 0-400 m water column along a 1,500 nm W-E transect from Noumea (New Caledonia) to determine the CH4 concentrations and genetic diversity of marine picocyanobacteria. Results indicate a CH4 oversaturation of the oxic mixed layer over the whole transect, strongly correlated to phosphate concentrations below detection limits, the abundance of Prochlorococcus and Synechococcus cells as well as the relative abundance of specific Synechococcusclades. These results are in agreement with the recent findings from lab-based experiments showing the ability of cyanobacteria to produce CH4 under both light and dark conditions. Furthermore, analysis of the Tara Oceans metagenomes showed that several genes potentially involved in the transport and assimilation of phosphonates and/or phosphites, are specifically present in phosphate-limited regions of the world ocean. Further studies are required to identify the genes involved in the CH4 production in the surface layer of the WTSP as well as to evaluate the fate of CH4 in the water column.

bottom of page